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Abstract—Heat transfer to generalized Couette flow of a power-law non-Newtonian fluid in a concentric
annulus with moving outer cylinder is investigated. Velocity distribution equations in integral form are
developed for the generalized flow in which the maximum velocity may occur between the two cylinders
or at the moving outer cylinder, depending on the imposed pressure gradient. The heat transfer model,
which includes the viscous dissipation, is numerically simulated for the boundary conditions of constant
cylinder temperature. The present numerical solutions agree very well with the previous semi-analytic ones
for a special case. The effects of several dimensionless parameters such as the reciprocal of pressure gradient,
pseudoplastic index and viscous dissipation parameter, on the heat transfer characteristics are explored.

1. INTRODUCTION

StuDpiEs of heat transfer characteristics of non-New-
tonian fluids in conduits have been of great practical
significance primarily because of its potential appli-
cations in many areas of applied sciences, such as
polymer and food processings [1, 2]. In particular,
polymer coatings on plates, wires or tubes for cor-
rosion resistance or protection have been gaining
wide industrial acceptance in recent years [3]. Inves-
tigations of the heat transfer characteristics of non-
Newtonian fluids can lead to considerable under-
standing of the fundamental aspects of this process.

Hong and Mathews [4] treated the heat transfer
problem of ordinary non-Newtonian flow in con-
centric annuli. Lin, the present author, considered
previously the heat transfer problems of generalized
Couette non-Newtonian flow between parallel plates
with one moving plate [5] and in concentric annuli
with moving inner cylinder [6]. One problem of com-
parable practical significance has not received any
attention thus far. This is the heat transfer to gener-
alized non-Newtonian flow in concentric annuli with
moving outer cylinder. This problem may simulate
the polymer coating inside a tube. In fact, metal tubes
with appropriate polymer inner linings have been
widely used in chemical process industries for trans-
porting corrosive fluids for years [3]. Although this
problem shows some similarities in appearance to that
considered by Lin and Hsieh [6], they do have a
marked difference in the flow patterns and thus the
heat transfer characteristics. The present investigation
is to consider the heat transfer problem to generalized
power-law non-Newtoman flow in annuli with
moving outer cylinder.

2. VELOCITY DISTRIBUTION OF FLOW

The velocity distribution of the present problem has
not been available in the open literature. It has to be
determined before the heat transfer investigations can
be undertaken, hence the equations of velocity dis-
tribution need to be developed first.

Considering a steady, one-dimensional flow, the
momentum balance equation is represented by

dp

dx’ M

1 d( )

— ()= —

r dr
Assuming a constant axial pressure gradient, the
above equation can be integrated to yield

dp ¢
r:(—d-x>r+r (2)

¢ being the integration constant.

The velocity distribution for the generalized non-
Newtonian flow in annuli can be divided into two
types. The first type is that when the imposed pressure
gradient is not sufficiently strong, the maximum vel-
ocity occurs at the moving outer cylinder. The second
one is that the pressure gradient is strong enough to
create a maximum velocity between the two cylinders.
These two cases need to be treated separately.

If the maximum velocity occurs at the moving outer
cylinder, the velocity gradient is positive over the flow
region. The shear stress for a power-law fluid can be

represented by
dv i
T=—m ( dr) . 3)
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NOMENCLATURE

A dimensionless integration constant, o, v, local velocities in regions 1 and 2

(—cfmryx)'? v constant velocity of moving outer
¢ integration constant cylinder
G, specific heat z axial coordinate
k dimensionless radius of inner cylinder Z dimensionless axial coordinate,
ky thermal conductivity of fluid =k, [pC,Vr3.
m consistency index
n pseudoplastic index Greek symbols
Nu Nusselt number, 2r Ak, o pressure gradient parameter,
P pressurc (—ro/2m)(dp/dz)
r radial coordinate p reciprocal of the dimensionless pressure
o radius of outer cylinder gradient parameter, V/r o'
R dimensionless radial coordinate, r/r, v dimensionless wall temperature of the
T temperature outer cylinder, (T, —T)/(Ty—T))
Ty inlet fluid temperature 0 dimensionless temperature,
T, wall temperature of inner cylinder (T—-TH(Ty—T),)
T, water temperature of outer cylinder {#> dimensionless bulk temperature,
{T> bulk temperaturc KTH>—-TH(Te—T))
U dimensionless velocity. v/ ¥ 0 density of fluid
U,. U, dimensionless velocities, ¢,/ and o dimensionless parameter,

% (" VY Y m VI ke (T — T
r local velocity T shear stress.

Combining equations (2) and (3) and introducing
appropriate dimensionless variables yiclds

al™ <% — R> ’ . 4)

Using the boundary conditions ¢ =0 at r = kr,,
equation (4) can be integrated

1 R(AZ Iin
U=~ - —R)} dR. 5
il (2 -#) ©

At the moving outer cylinder, U = |1 and this con-
dition is employed to determine A4. hence it is obtained
from equation (5)

ﬁ <;: »R) "dR = §. (6)

The method of false position {7] is used to determine
the value of 4 in terms of n, k and f.

For the second type of fluid flow with strong
imposed pressure gradient, the velocity distribution can
be divided into two regions because of the appearance
of a maximum velocity between the two cylinders. The
first region is between the point of maximum velocity
and the moving outer cylinder. Due to the negative
velocity gradient in. this region, the shear stress
equation becomes

B dv] 1
r-m(—ar> . (7

Combining cquations (2) and (7) gives

do_
dr

E‘]zvl _ i R 42 L (8)
dr = 7 R/ -

Using the boundary condition », =V at R=1,
equation (8) can be integrated to yield

1 0 A2\
Jo— — 0
bl_l+[f£ <R R> dR

for A<SR<IL. O

Note that A4 is the location where the maximum vel-
ocity occurs. This can be easily seen from equation
(8) because the velocity gradient disappears at the
point of maximum velocity or at R = A.

In the second region between the point of maximum
velocity and the inner cylinder, the velocity gradient
is positive, just like that of the first type of flow, hence
equation (5) still is applicable and can be rewritten as

1 R A: im
UZ:BJA. (/R~R> dR for k< R<A.

(1)

To determine the numerical values of 4 for the
present case, the boundary condition U, = U, at
R=A can be used, hence it is obtained from
equations (9) and (10)

4/ 42 Rl,‘nd 1 A2 |,'nd .
R R-A R- & R=f (11

Again the numerical values of 4 were also computed
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Table 1. Numerical values of 4 in terms of » and f with
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Table 2. Numerical values of A in terms of » and f# with

k=04 k=038
n n

B 0.2 0.4 0.6 0.8 1.0 B 0.2 0.4 0.6 0.8 1.0
0.005 0.67514 0.66984 0.67414 0.67800 0.68105 0.001 1.01862 | 0.92241 0.90468 0.90157 0.90063
0.010 0.69264 0.67764 0.67956 0.68248 0.68504 0.002 1.04314 | 0.94234 091175 0.90527 0.90312
0.015 0.70607 0.68512 0.68488 0.68692 0.68901 0.003 1.05865 | 0.95787 0.91864 0.90894 0.90559
0.020 0.71689 0.69228 0.69011 0.69131 0.69296 0.004 1.07020 | 0.97044 0.92533 0.91259 0.90807
0.025 0.72589 0.69913 0.69526 0.69567 0.69689 0.005 1.07930 | 0.98101 0.93181 0.91621 0.91053
0.04 0.74659 0.71812 0.71023 0.70851 0.70854 0.006 1.08731 | 0.99015 0.93806 0.91981 0.91299
0.06 0.76590 0.74031 0.72912 0.72517 0.72378 0.007 1.09407 | 0.99824 0.94409 0.92338 0.91544
0.08 0.78047 0.75960 0.74689 0.74127 0.73870 0.008 1.10005 1.00552 | 0.94989 0.92692 0.91788
0.10 0.79227 0.77663 0.76363 0.75685 0.75333 0.009 1.10542 1.01213 | 0.95548 0.93043 0.92032
0.12 0.80216 0.79187 0.77945 0.77197 0.76768 0.010 1.11030 1.01824 | 0.96085 0.93391 0.92275
0.14 0.81070 0.80566 0.79444 0.78662 0.78177 0.012 1.11891 1.02921 | 0.97095 0.94078 0.92760
0.16 0.81822 0.81826 0.80866 0.80085 0.79561 0.014 1.12637 1.03892 | 0.98040 0.94753 0.93241
0.18 0.82496 0.82986 0.82220 0.81468 0.80921 0.016 1.13296 1.04767 | 0.98913 095414 0.93721
0.2 0.83106 0.84061 0.83511 0.82813 0.82258 0.018 1.13887 1.05567 | 0.99725 0.96063 0.94198
0.3 0.85528 0.88521 0.89191 0.89033 0.88644 0.020 1.14425 1.06306 1.00484 | 0.96699 (.94672
0.4 0.87320 0.91984 093904 0.94546 0.94600 0.025 1.15590 1.07945 1.02196 | 0.98227 0.95848
0.5 0.88753 0.94838 0.97937 0.99486 | 1.00202 0.030 1.16569 1.09365 1.03723 | 0.99666 0.97010
0.6 0.89952 0.97280 | 1.01463 1.03944 1.05508 0.035 1.17417 1.10626 1.05114 1.01014 | 0.98158
0.8 0.91897 | 1.01339 1.07480 1.11859 1.15389 0.040 1.18166 1.11765 1.06400 1.02287 | 0.99293
1.0 0.93452 | 1.04669 1.12577 1.18852 1.24488 0.045 1.18839 1.12808 1.07603 1.03504 1.00415
2.0 0.98546 | 1.16126 1.31258 1.46279 1.62514 0.050 1.19450 1.13772 1.08737 1.04675 1.01525
5.0 1.05939 1.34282 1.64135 1.99517 2.43211 0.075 1.21887 1.17775 1.13656 1.10013 1.06900
10.0 1.12068 1.50767 1.96822 2.56997 2.37223 0.1 1.23701 1.20918 1.17753 1.14752 1.12018
0 o0 oo oG 0 0 0.2 1.28370 1.29633 1.30123 1.30355 1.30497
0.3 1.31330 1.35639 1.39305 1.42931 1.46666
0.4 1.33525 1.40317 1.46839 1.53746 1.61221
0.5 1.35287 1.44206 1.53324 1.63363 1.74568
0.75 1.38628 1.51902 1.66689 1.83939 2.04150
iteratively. Some typical values are given in Tables 1 1.0 141110 1.57889 1.77524 2.01268 2.29958
and 2 in terms of n, k and . The values above the gg :ggg?g ;gggg; ggﬁ?ig %gi;g; 25383
broke.n lines are for the secopd case w1.th amaximum .’ 164743 225003 318751 461372 675432

velocity between the two cylinders while those below . s © oo o0

are for the first case with a maximum velocity at the
moving outer cylinder. Figure 1 shows the velocity
distribution for different values of f.

An analytical expression for determining 4 can be
obtained from equations (6) and (11) as a special case.
When n = 1, both equations reduce to

A=<w+xrw61]>. (12)

In (k)

For this particular case, the numerical values of A
obtained by the iterative method agree very well with
those obtained from equation (12) with the difference
being less than 10~ %,

3. THE HEAT TRANSFER MODEL

For a steady state non-Newtonian flow with con-
stant physical properties, the heat transfer equation
with viscous dissipation can be represented by

oT o:T 18T dv
Collm ke (S 425 ().
PEet o, l<6r"Z + r 6r> T(dr) (13)

In dimensionless form, equation (13) can be rewritten
as

o0 9%0 N
0Z OR?

1 a0
U(R) R 2R

+af(R) (14)

where U(R) is the velocity distribution as given by
equation (5) for the first case and by equations (9)
and (10) for the second case. The viscous dissipation
function f(R) is represented by

AZ (n+ in
ﬂm=(R—@

\

(15)

for the first case with a maximum velocity at the outer
moving cylinder and by

Fi6. 1. Velocity distribution for different values of f with
k=02andn=0.6.
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. A\ T T T T T T
S(R)=| R~ AR (16)
R 3}~ —— Hong a Mathews
A° 1+ 1)in ° Present solution
:<~—R> k<R<A (17) g 2
R k=0-2
I+ a
for the second case with a maximum velocity between
two cylinders. ol
The inlet and boundary conditions in dimensionless o )
form can be rewritten as
Z=0; 0=1 (18) RS
£
R=k: 0=0 (19) 2
R=1: 0=y 20) A
The Nusselt number for this problem becomes ny L
0 : : i
2 /a0 002 00601 02 06 OI 02 06 |
Nup= | .+ 21
" Y \OR |-y @b z
FiG. 2. Comparison of the outer Nusselt number obtained
for the inner cylinder and in this study with those of Hong and Mathews [4].
2 c0 ,
Nu, = <’()’§;; GR !, (22)  the situation is reversed. This phenomenon is sig-

for the outer cylinder. The bulk temperature <8 is
defined as

J VU(R)R AR

WOy = (23)
( U(R)RdR
u)"
Equation (14), along with the boundary conditions,
equations (18)—(20), was numerically tackled by the
implicit Crank--Nicolson finite difterence method [7].
This method is computationally stable and very accur-
ate. The dimensionless temperatures were generated
first and then the bulk temperature and the Nusselt
numbers were computed from cquations (23), (21)
and (22). respectively.

4. DISCUSSION OF RESULTS

To ascertain the accuracy of the numerical solutions
obtained by the finite difference method employed in
this study, several runs were made for heat transfer to
non-Newtonian fluid in laminar flow through con-
centric annuli with stationary cylinders as a special
case so that comparison can be made with the previous
results. Figure 2 shows the present solutions and those
of Hong and Mathews [4] for the outer Nusselt num-
bers. It is apparent that these two solutions are essen-
tially identical. Other typical results for the present
heat transfer problem are shown in the following
figures.

Figure 3 displays the effect of the reciprocal of the
dimensionless pressure gradient parameter f§ on the
dimensionless bulk temperature. It is noted that near
the channel entrance of Z < 0.04, the bulk tem-
perature increases with decreasing ff and beyond that

nificantly ditferent from that with moving inner cylin-
der. The effect of B is in fact twofold. Small § implies
a fast fluid flow which will result in a shorter fluid
residence time inside the channel. A short flow resi-
dence time in turn means less heat loss and hence
a higher bulk temperature will be expected. In the
meantime, fast fluid flow also tends to increase the
heat transfer rate. These two effects are opposite to
cach other. For the previous case with moving inner
cylinder [6), the former effect outweighs the latter. For
the present case, the former cffect still dominates for
Z < 0.04. For Z > 0.04, heat loss due to fast fluid
flow tends, however, to outweigh the latter effect and

12 T T

T

I T

<6>

0-04
o6t |
e I R S N N N N S
-00! Q04 00 -02 06 01 02 o6 |

z

FiG. 3. Effect of the reciprocal of dimensionless pressure
gradient on the dimensionless bulk temperature with k = 0.4,
n=080=0andy=1.
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F1G. 4. Effect of the pseudoplastic index on the dimensionless
bulk temperature with k =04, =02, 06 =0andy = .

thus causes a lowering in the bulk fluid temperature
at the thermally fully developed region as f decreases.

Figure 4 demonstrates the effect of the pseudo-
plastic index on the dimensionless bulk temperature.
The general pattern of the bulk temperature profiles
does not show much difference from that of the pre-
vious case [6] except that the effect of n seems to be
more pronounced for the present case.

Viscous dissipation tends to increase the dimen-
sionless bulk temperature because of irreversible con-
version of mechanical energy to thermal energy. This
holds true for the present case as well as the previous
one. Figure 5 clearly displays very similar charac-

L1
0601 02 06 |

[ O O
004 -0 02

001

z

F1G. 5. Effect of viscous dissipation parameter on the dimen-
sionless bulk temperature with k = 0.4, n = 0.8, § = 0.2 and
y =L
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teristic profiles of the dimensionless bulk temperature
as those of the previous one [6].

The effect of the ratio of inner to cuter radii on the
dimensionless bulk temperature profiles is shown in
Fig. 6. The bulk temperature decreases steadily with
increasing Z until the temperature profiles are fully
developed. The bulk temperature generally decreases
with increasing k as anticipated except that the fully
developed bulk temperature for k = 0.8 is only slightly
higher than that for k = 0.6. The reason for this is
not exactly known. It may be due to the fact that at
f =0.04 and n = 0.8 chosen for this illustration, the
maximum velocity occurs between two cylinders for
k < 0.6 while that with k = 0.8 occurs at the moving
outer cylinder. Such a transition of maximum velocity
from one type to the other could have a marked influ-
ence on the heat transfer rate and the bulk tem-
perature profile.

Figure 7 shows the effect of the reciprocal of dimen-
sionless pressure gradient parameter f on the Nusselt
numbers. For this particular case with k = 0.4 and
n = 0.8, the maximum velocity occurs at the moving
outer cylinder when f = 0.8 but it takes place between
the two cylinders when f < 0.2. Hence the velocity
gradient at the inner cylinder wall is expected to
increase with decreasing f. This contributes to an
increase in the inner Nusselt number with decreasing
p. At the outer cylinder wall, the situation is reversed.
The velocity gradient at the cylinder wall decreases
with decreasing f and so does the outer Nusselt
number. The pseudoplastic index »n seems to produce
quite similar effects on the Nusselt number as dis-
played in Fig. 8. The only difference is that the effect
of n on both Nu; and Nu, is less pronounced than that
of f. It is also noted that in this figurc that the cffect
of n seems to be diminishing as n approaches 1.

12—

CTTT T

P

<0>

o3 2
o RN S N Y UMM (N 0 U AN (S B O
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Z

F1G. 6. Effect of the inner—outer radius ratio on the dimen-
sionless bulk temperature with k = 0.8, f = 0.04, ¢ = 0 and
7= 1
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0601 02 06 |

FiG. 7. Effect of the reciprocal of dimensionless pressure
gradient on the Nusselt number withk =04,n =08.6=10
and y = 1.

Figure 9 examines the effect of viscous dissipation
on the inner and outer Nusselt numbers. It is noted
that viscous dissipation enhances the inner Nusseit
number but suppresses the outer one. With viscous
dissipation, the fluid temperature is generally main-
tained at a higher level than that without. This causes
an increase in the temperature gradient at the inner
cylinder and a decrease at the outer cylinder. With
increasing viscous dissipation the inner Nusselt num-
ber is, therefore, proportionately increased while the
outer one is decreased. The negative outer Nusselt
number near the channel entrance for the case with
viscous dissipation is due to the fact that the viscous

BT 1

n=1-Q

ol AR 0 S 1 O T
00! 004 Of 02 08 01 02 06 |

Z

FiG. 8. Effect of the pseudoplastic index on the Nusselt
number withk =04, =02, ¢ =0andy = 1.

S. H. Lin

06 01 02 06 |

F1c. 9. Effect of viscous dissipation parameter on the Nusselt
number withk =04, n=08,f=02andy = L.

dissipation rapidly boosts the local fluid temperature
above its entrance level within a short distance from
the entrance and thus causes a negative temperature
gradient. This negative temperature gradient dis-
appears further downstream because the heat loss
through the cylinder walls is more than enough to
compensate for the heat generation.

Figure 10 indicates that while the inner Nusselt
number decreases with increasing &, the outer Nusselt
number increases. This phenomenon is very similar to
the effects of § and n. This is mainly due to the fact
that as & decreases, the velocity gradient at the inner
cylinder wall increases whereas that at the outer cyl-
inder wall decreases.

30 T T T T T T
2 —6
k=08
20— —&
1 06
18— {4
- 04 =
2
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14} 3
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10f —2
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& i
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Mo VAL W gy L
Q01 004 -Of 02 06 Ot 02 o8 i
z

FiG. 10. Effect of the inner-outer radius ratio on the Nusselt
number with » = 0.8, # = 0.04, 0 = 0and y = 1.
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5. CONCLUSIONS

An analytical procedure is presented in this paper
for studying the heat transfer characteristics of a
power-law non-Newtonian fluid in the thermal devel-
oping region in an annulus. The steady state, two-
dimensional heat transfer model is formulated and
simulated by using an implicit finite difference method
to investigate the effects of several dimensionless par-
ameters on the heat transfer characteristics. The pre-
sent numerical solution for a special case is found
to be in excellent agreement with the previous one
obtained by a semi-analytic method. The accuracy of
the finite difference method, means that numerical
results of temperature profiles and the Nusselt num-
bers can be generated for a wide spectrum of physical
parameters which will provide useful and relevant
information for process equipment design.
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TRANSFERT THERMIQUE POUR UN ECOULEMENT DE COUETTE DE FLUIDE NON
NEWTONIEN DANS UN ESPACE ANNULAIRE AVEC CYLINDRE EXTERNE TOURNANT

Résumé—On ¢tudie le transfert thermique d'un écoulement généralisé de Couette pour un fluide non
newtonien a loi puissance dans un espace annulaire avec cylindre externe mobile. Les equations, sous forme
intégrale, de la distribution de vitesse sont développées pour 'écoulement généralisé dans lequel la vitesse
maximale peut apparaitre entre les deux cylindres ou sur le cylindre externe, suivant le gradient de pression
imposé. Le modéle de transfert de chaleur qui inclut la dissipation visqueuse est traité numériquement pour
les conditions aux limites de température constante. Les solutions numériques s’accordent bien avec celles
semi-empiriques connues dans un cas particulier. On explore les effets des paramétres adimensionnels tels
que le gradient de pression inverse, I'indice pseudoplastique et le paramétre de dissipation visqueuse, sur
les caractéristiques du transfert thermique.

WARMEUBERGANG IN EINER VERALLGEMEINERTEN NICHT-NEWTONSCHEN
COUETTE-STROMUNG IN EINEM RINGSPALT MIT BEWEGTEM AUSSEREN
ZYLINDER

Zusammenfassung—FEs wird der Wirmeibergang in einer verallgemeinerten Couette-Strémung eines nicht-
Newtonschen (‘power-law’) Fluids in einem konzentrischen Ringspalt mit bewegtem duBerem Zylinder
untersucht. Die Gleichungen fiir die Geschwindigkeitsverteilung in der verallgemeinerten Strémung werden
in Integralform entwickelt, wobei dic Maximalgeschwindigkeit zwischen den beiden Zylindern oder am
bewegten duBeren Zylinder auftreten kann. Dies hidngt vom aufgeprdgten Druckgradienten ab. Das
Wirmeiibergangsmodell enthdlt die viskose Dissipation und wird fiir die Randbedingung konstanter
Zylindertemperatur numerisch geldst. Die vorgelegten numerischen Ergebnisse stimmen sehr gut mit
fritheren halbanalytischen Losungen fiir einen Spezialfall diberein. Der Einfluf} einiger dimensionsloser
Parameter wie der Kehrwert des Druckgradienten, der Plaseudoplastik-Index und der Parameter fir die
viskose Dissipation auf die Charakteristik des Wirmeiibergangs werden untersucht.

TEIUIOINEPEHOC K OBOBHIEHHOMY TEYEHHUIO KV3TTA HEHBIOTOHOBCKOH
KUAKOCTH B KOJIBLUEBBIX KAHAJIAX C JABHXVIHUMCA BHEINHWM HWIWHIAPOM

Annotanus—HMccnenyercs renonepeHoc k o606mennoMy Tedennio KysTTa ¢TeneHHOH HEHBIOTOHOBC-
KOH XHIKOCTH B KOHHCHTPHYECKHX KOJBUEBBIX KAHANAX C ABWXYLIMMCH BHEILHMM IuiuHapom. IMomy-
4eHbI YPABHEHHS PACHpCAcICHHS CKOPOCTeH B HMHTerpanmbHoit dopme s OGODIIEHHOrO TeueHHUS,
CKOPOCTb KOTOPOTO MaxCHMaibHa MEXIy OOGSHMH NITHHAPAMH WM ¥ JBHXYINCTOCH BHELUIHETO B 3aBH-
CHMOCTH OT HaJaraeMoro rpajsesta AaBjicHHA, JHCIEHHO pPelaeTCs MOJE/Ib TEIUIONEPEHOoCa, BKIIO-
qaiolas BA3Kylo [UCCHNALMIO, NPH IPaHWYHBIX YCJIOBHAX C HOCTOAHHOM TeMNEpaTypol UHIMHIpA.
YyucieHHBIE PELUEHHS XOPOIIO COTJIACYIOTCA C MOJMYIMIOUPHYECKHMH, MOJNYYEeHHBIMH paHee 18 onpeae-
siennoro caysas. Mccaenyerea siusune, OKa3biBAEMOE Ha XaPaKTEPHCTHKH TEIUIONEPEHOC Takumu Ges-
pa3MepHBIME  NapaMeTpaMu  Kak oOpaTHas BEeIMYHHA [PAaAHEHTA  JBJICHHS, [OKa3aTalb
NCEBAOUIACTHYHOCTH M TIApaMeTp BA3KOR JUCCHMALMA.



