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Abstract-Heat transfer to generalized Couette flow of a power-law non-Newtonian fluid in a concentric 
annulus with moving outer cylinder is investigated. Velocity distribution equations in integral form are 
developed for the generalized Row in which the maximum velocity may occur between the two cylinders 
or at the moving outer cylinder, depending on the imposed pressure gradient. The heat transfer model, 
which includes the viscous dissipation, is numerically simulated for the boundary conditions of constant 
cylinder temperature. The present numerical solutions agree very well with the previous semi-analytic ones 
for a special case. The effects of several dimensionless parameters such as the reciprocal of pressure gradient, 
pseudoplastic index and viscous dissipation parameter, on the heat transfer characteristics are explored. 

1. INTRODUCTION 

STUDIES of heat transfer characteristics of non-New- 

tonian fluids in conduits have been of great practical 

significance primarily because of its potential appli- 
cations in many areas of applied sciences, such as 
polymer and food processings [ 1, 21. In particular, 
polymer coatings on plates, wires or tubes for cor- 
rosion resistance or protection have been gaining 

wide industrial acceptance in recent years [3]. Inves- 
tigations of the heat transfer ctlaracteristics of non- 
Newtonian fluids can lead to considerable under- 

standing of the fundamental aspects of this process. 

Hong and Mathews [4] treated the heat transfer 
problem of ordinary non-Newtonian flow in con- 
centric annuli. Lin, the present author, considered 
previously the heat transfer problems of generalized 
Couette non-Newtonian flow between parallel plates 
with one moving plate [5] and in concentric annuli 
with moving inner cylinder [6]. One problem of com- 
parable practical significance has not received any 
attention thus far. This is the heat transfer to gener- 
alized non-Newtonian flow in concenrric annuli with 
moving outer cylinder. This problem may simulate 
the polymer coating inside a tube. In fact, metal tubes 
with appropriate polymer inner linings have been 
widely used in chemical process industries for trans- 

porting corrosive fluids for years [3]. Although this 
problem shows some similarities in appearance to that 
considered by Lin and Hsieh [6], they do have a 
marked difference in the flow patterns and thus the 
heat transfer characteristics. The present investigation 
is to consider the heat transfer problem to generalized 
power-law non-Newtonian flow in annuli with 
moving outer cylinder. 

2. VELOCITY DISTRIBUTION OF FLOW 

The velocity distribution of the present problem has 
not been available in the open literature. It has to be 
determined before the heat transfer investigations can 
be undertaken, hence the equations of velocity dis- 
tribution need to be developed first. 

Considering a steady, one-dimensional flow, the 
momentum baiance equation is represented by 

(1) 

Assuming a constant axial pressure gradient, the 
above equation can be integrated to yield 

Z= 

c being the integration constant. 
The velocity distribution for the generalized non- 

Newtonian flow in annuli can be divided into two 
types. The first type is that when the imposed pressure 
gradient is not sufficiently strong, the maximum vel- 

ocity occurs at the moving outer cylinder. The second 
one is that the pressure gradient is strong enough to 
create a maximum velocity between the two cylinders. 

These two cases need to be treated separately. 
If the maximum velocity occurs at the moving outer 

cylinder, the velocity gradient is positive over the flow 
region. The shear stress for a power-law fluid cad be 

represented by 

3069 



3070 s. H. Llh 

NOMENCLATURE 

dimensionless integration constant. 

( - c’/Wr.!,%) ’ z 
integration constant 
specific heat 
dimensionless radius of inner cylinder 
thermal conductivity of fluid 
consistency index 

pseudoplastic index 
Nusselt number, 2r,,h/k, 
pressure 
radial coordinate 
radius of outer cylinder 
dimensionless radial coordinate, r/r,, 

tempera turc 
inlet fluid temperature 
wall temperature of inner cylinder 

water temperature of outer cylinder 
bulk temperature 
dimensionless velocity. I?/ Y 

(I,, Li: dimensionless velocities, c, /V and 
i.?:‘V 

1 local velocity 

local velocities in regions 1 and 2 

constant velocity of moving ouier 
cylinder 
axial coordinate 
dimensionless axial coordinate. 

rk,ipC,Vrz. 

Greek symbols 
pressure gradient parameter. 

(- r,,/2m2)(dp/d=) 
reciprocal of the dimensionless pressure 
grddicnt parameter. i//r-,,a”” 
dimensionless wall temperature of the 

outer cylinder, ( Tz - T,)/( T,,- T, ) 

dimensionless temperature, 

(T-T,)I(T,,-T,) 
dimensionless bulk temperature, 

(CT)-T,)I(T,-T,) 
density of fluid 
dimensionless parameter, 
(a’ “r,,! V)“+‘(mV”+ ‘)/[Y:,~~ ‘k, (T,,- T,)] 

shear stress. 

Combining equations (2) and (3) and introducing dr , = _-z’.” R_ A2 “I 
appropriate dimensionless variables yields -d, i ! R 

(8) 

(4) Using the boundary condition I., = C’ at R = I. 
equation (8) can be integrated to yield 

Using the boundary conditions r = 0 at r = kr,,, 

equation (4) can be integrated CT, = l+;jl (R-;)‘dR 

At the moving outer cylinder, Cl = I and this con- 
dition is employed to determine A. hence it is obtained 
from equation (5) 

(6) 

The method of false posit-ion [7] is used to determine 
the value of A in terms of n, k and b. 

For the second type of fluid flow with strong 
imposed pressure gradient, the velocity distribution can 
be divided into two regions because of the appearance 
of a maximum velocity between the two cylinders. The 
first region is between the point of maximum velocity 
and the moving outer cylinder. Due to the negative 
velocity gradient in, this region, the shear stress 
equation becomes 

for A<R<I. (9) 

Note that n is the location where the maximum vel- 
ocity occurs. This can be easily seen from equation 
(8) because the velocity gradient disappears at the 
point of maximum velocity or at R = A. 

In the second region between the point of maximum 

velocity and the inner cylinder, the velocity gradient 
is positive, just like that of the first type of flow, hence 
equation (5) still is applicable and can be rewritten as 

To determine the numerical values of A for the 
present case, the boundary condition U, = Crz at 
R = A can be used, hence it is obtained from 
equations (9) and (IO) 

du, ” 
T=m --~ 

i > dr 
(7) JI”(~~-R!‘dR-~(R-~~..‘dR=il. (I]) 

Combining equations (2) and (7) gives Again the numerical values of A were also computed 



Table I. Numerical values of A in terms of n and p with Table 2. Numerical values of A in lerms of n and [I with 
k = 0.4 k = 0.8 

n n 

0.005 0.67514 0.66984 0.67414 
0.010 0.69264 0.67764 0.67956 
0.015 0.70607 0.68512 0.68488 
0.020 0.71689 0.69228 0.6901 I 
0.025 0.72589 0.699 13 0.69526 
0.04 0.74659 0.71812 0.71023 
0.06 0.76590 0.74031 0.72912 
0.08 0.78047 0.75960 0.74689 
0.10 0.79227 0.77663 0.76363 
0.12 0.80216 0.79187 0.7?945 
0.14 0.81070 0.80566 0.79444 
0.16 0.81822 0.81826 0.80866 
0.18 0.82496 0.82986 0.82220 
0.2 0.83106 0.84061 0.8351 I 
0.3 0.85528 0.88521 0.89191 
0.4 0.87320 0.91984 0.93904 
0.5 0.88753 0.94838 0.97937 

i; ;#E; (!j!!!$E 

5.0 1.05939 1.34282 1.64135 
10.0 I.12068 I. 50767 1.96822 
Lc oc, 05 cc 

P 0.2 0.4 0.6 0.8 1.0 

0.68 105 
0.68504 
0.68901 
0.69296 
0.69689 
0.70854 
0.72378 
0.73870 
0.75333 
0.76768 
0.78 177 
0.79561 
0.80921 
0.82258 
0.88644 

0.67800 0.001 1.01862 0.92241 0.90468 0.90157 
0.68248 0.002 1.043 14 0.94234 0.91 175 0.90527 
0.68692 0.003 1.05865 0.95787 0.91864 0.90894 
0.69131 0.004 1.07020 0.97044 0.92533 0.91259 
0.69567 0.005 I .07950 0.98101 0.93181 0.91621 
0.70851 0.006 1.08731 0.99015 0.93806 0.91981 
0.72517 0.007 1.09407 1 0.99824 0.94409 0.92338 
0.74127 0.008 I.10005 1.00552 1 0.94989 0.92692 
0.75685 0.009 1.10542 0.93043 
0.77197 0.010 1.11030 0.93391 
0.78662 0.012 1.11891 0.94078 
0.80085 0.014 1.12637 0.94753 
0.81468 0.016 1.13296 0.95414 
0.82813 0.018 1.13887 0.96063 
0.89033 0.020 1.14425 1.06306 1.00484 0.96699 
0.94546 0.94600 0.025 1.15590 1.07945 1.02196 1 0.98227 
0.99486 1 0.030 1.16569 1.09365 1.03723 0.99666 0.97010 
1.03944 1.05508 0.035 1.17417 1.10626 1.05114 
1.11859 1.15389 0.040 1.18166 1.11765 1.06400 
1.18852 1.24488 0.045 1.18839 1.12808 1.07603 
1.46279 1.62514 0.050 1.19450 1.13772 1.08737 
1.99517 2.43211 0.075 1.21887 1.17775 1.13656 
2.56997 2.37223 0.1 1.23701 1.20918 1.i7753 

co w 0.2 1.28370 1.29633 1.30123 
0.3 1.31330 1.35639 I .39305 
0.4 I .33525 1.40317 1.46839 
0.5 I .35287 1.44206 I .53324 
0.75 I .38628 1.51902 1.66689 
1.0 1.41110 1.57889 1.77524 
2.0 1.47496 I .74283 2.08910 
5.0 I .56855 2.00802 2.64119 

10.0 1.64743 2.25103 3.18751 
co c(I cc co 

iteratively. Some typical values are given in Tables 1 

and 2 in terms of n, k and j?. The values above the 
broken lines are for the second case with a maximum 
velocity between the two cylinders while those below 
are for the first case with a maximum velocity at the 
moving outer cylinder. Figure 1 shows the velocity 
distribution for different values of /3. 

An analytical expression for determining A can be 

obtained from equations (6) and (11) as a special case. 
When n = 1, both equations reduce to 

A = [P+:(l-I;‘)$& > 
I*2 

. (12) 

For this particular case, the numerical values of A 

obtained by the iterative method agree very well with 
those obtained from equation (12) with the difference 

being less than 10e4. 

3. THE HEATTRANSFER MODEL 

For a steady state non-Newtonian flow with con- 
stant physical properties, the heat transfer equation 
with viscous dissipation can be represented by 

pC,+cT= k ;, , (s;r+;;)-r($). (13) 

In dimensionless form, equation (13) can be rewritten 
as 

0 0.2 0.4 0.6 0.8 1.0 

0.90063 
0.90312 
0.90559 
0.90807 
0.91053 
0.91299 
0.91544 
0.91788 
0.92032 
0.92275 
0.92760 
0.93241 
0.93721 
0.94198 
0.94672 
0.95848 

1.02287 1 0.99293 
1.03504 1.00415 
1.04675 1.01525 
1.10013 1.06900 
1.14752 1.12018 
1.30355 1.30497 
1.42931 1.46666 
1.53746 1.61221 
1.63363 1.74568 
1.83939 2.04150 
2.01268 2.29958 
2.54101 3.12562 
3.54525 4.81807 
4.61372 6.75432 
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where U(R) is the velocity distribution as given by 
equation (5) for the first case and by equations (9) 
and (10) for the second case. The viscous dissipation 
function ,f( R) is represented by 

(15) 

for the first case with a maximum velocity at the outer 
moving cylinder and by 

u- 
I.0 I.5 2.0 2.5 

(14) 

l- k .-.-.- .---_c .- 

FIG. 1. Velocity distribution for different values of /j with 
k = 0.2 and n = 0.6. 
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for the second case with a maximum velocity between 

two cylinders. 
The inlet and boundary conditions in dimensionless 

form can be rewritten as 

Z=O; U=I (18) 

R=k: O=O (1% 

R=l: (l=i’. (20) 

The Nusselt number for this problem becomes 

for the inner cylinder and 

(21) 

for the outer cylinder. The bulk temperature (0) is 

defined as 

(23) 

Equation (14), along with the boundary conditions, 
equations (18)-(20). was numerically tackled by the 
implicit Crank--Nicolson finite difference method [7]. 
This method is computationally stable and very accur- 
ate. The dimensionless temperatures wcrc generated 

first and then the bulk temperature and the Nusselt 
numbers were computed from equations (23), (21) 
and (22). respectively. 

4. DISCUSSION OF RESULTS 

To ascertain the accuracy of the numerical solutions 
obtained by the finite difference method employed in 
this study, several runs were made for heat transfer to 
non-Newtonian fluid in lammar flow through con- 
centric annuli with stationary cylinders as a special 
case so that comparison can be made with the previous 
results. Figure 2 shows the present solutions and those 
of Hong and Mathews [4] for the outer Nussclt num- 
bers. It is apparent that these two solutions are esscn- 
tially identical. Other typical results for the present 
heat transfer problem are shown in the following 
figures. 

Figure 3 displays the effect of the reciprocal of the 
dimensionless pressure gradient parameter /j on the 
dimensionless bulk temperature. It is noted that near 
the channel entrance of Z < 0.04, the bulk tem- 
peraturc increases with decreasing [j and beyond that 

,002 oc6 ,ot .02 ,06 01 02 0.6 I 

FIG. 2. Comparison of the outer Nusselt number obtained 
in this study with those of Hong and Mathews [4]. 

the situation is reversed. This phenomenon is sig- 

nificantly diffcrent from that with moving inner cylin- 
der. The effect of / is in fact twofold. Small /j implies 

a fast fluid flow which will result in a shorter fluid 
residence time inside the channel. A short fow resi- 
dence time in turn means less heat loss and hence 
a higher bulk temperature will be expected. In the 
meantime, fast fluid flow also tends to increase the 

heat transfer rate. These two effects are opposite to 
each other. For the previous case with moving inner 
cylinder [6], the former effect outweighs the latter. For 
the present case, the former cfYect still dominates for 
Z 6 0.04. For Z > 0.04, heat loss due to fast fiuid 
flow tends, however, to outweigh the latter effect and 

I.2 , 
I III/ I “i 

,001 .004 0.01 .02 ce 0.1 02 @6 I 
z 

FIG. 3. Effect of the reciprocal of dimensionless pressure 
gradient on the dimensionless bulk temperature with k = 0.4. 

11 = 0.8, cr = 0 and ;’ = I. 
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001 ,004 .Ol .02 06 0.1 0.2 0.6 I 
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FIG. 4. Effect of the pseudoplastic index on the dimensionless 
bulk temperature with k = 0.4, /I = 0.2, D = 0 and y = 1. 

thus causes a lowering in the bulk fluid temperature 
at the thermally fully developed region as ,8 decreases. 

Figure 4 demonstrates the effect of the pseudo- 
plastic index on the dimensionless bulk temperature. 
The general pattern of the bulk temperature profiles 

does not show much difference from that of the pre- 
vious case [6] except that the effect of n seems to be 
more pronounced for the present case. 

Viscous dissipation tends to increase the dimen- 
sionless bulk temperature because of irreversible con- 
version of mechanical energy to thermal energy. This 
holds true for the present case as well as the previous 
one. Figure 5 clearly displays very similar charac- 

I.0 _ 

,001 004 .Ol .02 a6cH 02 06 I 

Z 

FIG. 5. Effect of viscous dissipation parameter on the dimen- 
sionless bulk temperature with k = 0.4, n = 0.8, p = 0.2 and 

y= I. 

teristic profiles of the dimensionless bulk temperature 
as those of the previous one [6]. 

The effect of the ratio of inner to outer radii on the 

dimensionless bulk temperature profiles is shown in 
Fig. 6. The bulk temperature decreases steadily with 
increasing Z until the temperature profiles are fully 
developed. The bulk temperature generally decreases 
with increasing k as anticipated except that the fully 
developed bulk temperature fork = 0.8 is only slightly 
higher than that for k = 0.6. The reason for this is 

not exactly known. It may be due to the fact that at 
p = 0.04 and n = 0.8 chosen for this illustration, the 

maximum velocity occurs between two cylinders for 
k < 0.6 while that with k = 0.8 occurs at the moving 
outer cylinder. Such a transition of maximum velocity 
from one type to the other could have a marked influ- 

ence on the heat transfer rate and the bulk tem- 
perature profile. 

Figure 7 shows the effect of the reciprocal of dimen- 

sionless pressure gradient parameter b on the Nusselt 
numbers. For this particular case with k = 0.4 and 
n = 0.8, the maximum velocity occurs at the moving 

outer cylinder when [j = 0.8 but it takes place between 
the two cylinders when /I < 0.2. Hence the velocity 
gradient at the inner cylinder wall is expected to 
increase with decreasing /j. This contributes to an 
increase in the inner Nusselt number with decreasing 
/j. At the outer cylinder wall, the situation is reversed. 

The velocity gradient at the cylinder wall decreases 
with decreasing j and so does the outer Nusselt 
number. The pseudoplastic index n seems to produce 
quite similar effects on the Nusselt number as dis- 
played in Fig. 8. The only difference is that the effect 
of n on both Nu, and Nu, is less pronounced than that 
of fi. It is also noted that in this figure that the effect 
of n seems to be diminishing as n approaches 1. 

I.2 ,,, / , /,, , , ,, 

0 1 II’! I iIll I !IlJ 
,001 GO4 .Ol .02 a6 0.1 0.2 06 I 

Z 

FIG. 6. Effect of the inner-outer radius ratio on the dimen- 
sionless bulk temperature with k = 0.8, fl = 0.04, c = 0 and 

i’= I. 
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FIG. 7. Effect of the reciprocal of dimensionless pressure FIG. 9. Effect of viscous dissipation parameter on the hlusseit 

gradient on the Nusselt number with k = 0.4, n = 0.8. ci = 0 number with k = 0.4, n = 0.8, /I = 0.2 and ;’ = I. 
and ;I = I. 

Figure 9 examines the effect of viscous dissipation 

on the inner and outer Nusselt numbers. It is noted 
that viscous dissipation enhances the inner Nusselt 
number but suppresses the outer one. With viscous 
dissipation, the fluid temperature is generally main- 
tained at a higher level than that without. This causes 
an increase in the temperature gradient at the inner 
cylinder and a decrease at the outer cylinder. With 
increasing viscous dissipation the inner Nusselt num- 
ber is, therefore, proportionately increased while the 
outer one is decreased. The negative outer Nusselt 

number near the channel entrance for the case with 
viscous dissipation is due to the fact that the viscous 

dissipation rapidly boosts the local fluid temperature 
above its entrance level within a short distance from 
the entrance and thus causes a negative temperature 
gradient. This negative temperature gradient dis- 
appears further downstream because the heat loss 
through the cylinder walls is more than enough to 
compensate for the heat generation. 

Figure IO indicates that while the inner Nusselt 

number decreases with increasing k, the outer Nusseh 
number increases. This phenomenon is very similar to 
the effects of /I and n. This is mainly due to the fact 

that as k decreases, the velocity gradient at the inner 
cylinder wall increases whereas that at the outer cyl- 

inder wall decreases. 

0 1 1111 1 I”1 ’ 
a01 ,004 01 .02 ,436 0.1 0.2 06 i 

z 

8. Effect of the pseudoplastic index on the Nusselt 
number with k = 0.4, /I = 0.2. D = 0 and ;’ = 1. 

Fro. 

.004 .Ol .02 46 04 0.2 06 I 

z 

10. Effect of the inner-outer radius ratio on the Nusselt 
number with n = 0.8. /J’ = 0.04, o = 0 and ;’ = I 
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5. CONCLUSIONS REFERENCES 

An analytical procedure is presented in this paper 1. 

for studying the heat transfer characteristics of a 
power-law non-Newtonian fluid in the thermal devel- 2. 
oping region in an annulus, The steady state, two- 3, 
dimensional heat transfer model is formulated and 
simulated by using an implicit finite difference method 
to investigate the effects of several dimensionless par- 4. 
ameters on the heat transfer characteristics. The pre- 
sent numerical solution for a special case is found 5, 
to be in excellent agreement with the previous one 
obtained by a semi-analytic method. The accuracy of 6. 
the finite difference method, means that numerical 
results of temperature profiles and the Nusselt num- 
bers can be generated for a wide spectrum of physical 7, 
parameters which will provide useful and relevant 
information for process equipment design. 
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TRANSFERT TH~R~IQUE POUR UN ECOULEMENT DE COUETTE DE FLUfDE NON 
NEWTONIEN DANS UN ESPACE ANNULAIRE AVEC CYLINDRE EXTERNE TOURNANT 

R&urn&On ttudie le transfert thermique d’un &oulement g&n&ah& de Couette pour un fluide non 
newtonien B ioi puissance dans un espace annulaire avec cylindre externe mobile. Les bquations. sous forme 
intkgrale, de la distribution de vitesse sont developpkes pour I’&coulement gt_nCralist dans lequel la vitesse 
maximale peut apparaitre entre les deux cylindres oti sur le cylindre externe, suivant le gradient de pression 
impost?. Le modPle de transfert de chaleur qui inclut la dissipation visqueuse est trait6 numbriquement pour 
les conditions aux limites de temp&rature constante. Les solutions numkriques s’accordent bien avec celles 
semi-empiriques connues dans un cas particulier. On explore les effets des paramktres adimensionneis tels 
que le gradient de pression inverse. I’indice pseudoplastique et le paramPtre de dissipation visqueuse. sur 

les caractiristiques du transfert thermique. 

WARMEOBERGANG IN EINER VERALLGEMEINERTEN NICHT-NEWTONSCHEN 
CouE-r-rE-srROMuNG IN EINEM RINGSPALT MIT BEWEGTEM AUSSEREN 

ZYLINDER 

Zus~menfa~ung-Es wird der W~~e~~rgang in einer verallgemeinerten Couett~-Str~mun~ eines nicht- 
Newtonschen (‘power-law’) Fluids in einem konzentrischen Ringspalt mit bewegtem IuRerem Zylinder 
untersucht. Die Gleichungen fiir die Geschwindigkeitsverteilung in der verallgemeinerten Strdmung werden 
in Integralform entwickelt, wobei die Maximalgeschwindigkeit zwischen den beiden Zylindern oder am 
bewegten &iJeren Zylinder auftreten kann. Dies h%ngt vom aufgeprggten Druckgradienten ab. Das 
W~rme~~rgangsmodell enthglt die viskose Dissipation und wird fiir die Randbedingung konstanter 
Zylindertemperatur numerisch gel&t. Die vorgelegten numerischen Ergebnisse stimmen sehr gut mit 
friiheren halbanalytischen Liisungen fiir einen Spezialfall iiberein. Der Einflui3 einiger dimensionsloser 
Parameter wie der Kehrwert des Druckgradienten, der Plaseudoplastik-Index und der Parameter fiir die 

viskose Dissipation auf die Charakteristik des W~rme~bergangs werden untersucht. 

TEH~OHEPEH~ K O~O~~EHHO~Y TE9EHHIO KY3TTA HEHb~TOHOBCKO~ 
‘)ICI,IAKOCTM B KO_@bIjEBbIX KAHAJIAX C AB~~Y~~MC~ BHE~H~M ~~~~H~~M 

AHHOTaUWE---&'iCCnenyeTCH rennonepewoc K o606memioMy TeYemiK) Ky3TTa CTeneHHOii HeHbK)TOHOBC- 

KOC X@lLIKOCT&% a KOHlWfTpWP2CKHX KOJIbUeBbIX KkWEUlaX C ~BH~~&SM‘3, BH‘2lUHHM IlaJI~HXpOM. nOJIy- 

4e*bI ypas~emin pa~n~~eneH~x CrcopocTeG B miTefpa_nbHoZi QtopMe mzi o6o6meHHoro TeYewia, 

CKOpOCTb XOTOpOr0 MaXCHMaJlbIiaMeZKAy o6esiME U~~~H~~M~ WJlA y LIBSGiQ'mWOCK BHemHerO B3aBH- 

CWMOCTH OT HanaraeMoro rpaneeHTa naanemia. YEtcneHHo pmaeTca bioxenb TennonepeHoca, BKSIH)- 

vammaa afl3~ym neccanami~, npe rpamwib~x ycnoeunx c ~~CTOSIHHO~~ TehmepaTypoR wnuHnpa. 

YucneHHble pemeiian xopomo cornacymrcn c nony3MnapasecKYrM8,nonygeHnbIMH paHee Qnr onpene- 

neHHorocnyqaa. Pfccnenyercn an~aH~e,oKa3~aaeM~ Ha XapaKTepsicTnKrr TennonepeHoca TaxAM= 6e3- 

pa3Mepmawi napaMeTpaM~ KaK o6paTnaa 6enwimia rpazmeHTa AB,EHUa, noKa3aTanb 

nceafionnacTwf5iocT~ enapaMeTpaa3xofin~ccwnami~. 


